The Space of 3-manifolds and Vassiliev Finite-type Invariants
نویسنده
چکیده
In this paper we develop the theory of finite-type invariants for homologically nontrivial 3-manifolds . We construct an infinite-dimensional affine space with a hypersurface in it corresponding to manifolds with Morse singularities. Connected components of the complement of this hypersurface correspond to homeomorphism type of spin 3-manifolds. This suggests the natural axiomatics of Vassiliev finite-type invariants for arbitrary closed 3-manifolds. An example of an invariant of order 1 is given.
منابع مشابه
Two constructions of weight systems for invariants of knots in non-trivial 3-manifolds
A new family of weight systems of finite type knot invariants of any positive degree in orientable 3-manifolds with non-trivial first homology group is constructed. The principal part of the Casson invariant of knots in such manifolds is split into the sum of infinitely many independent weight systems. Examples of knots separated by corresponding invariants and not separated by any other known ...
متن کاملUniversal Vassiliev invariants of links in coverings of 3-manifolds
We study Vassiliev invariants of links in a 3-manifold M by using chord diagrams labeled by elements of the fundamental group of M . We construct universal Vassiliev invariants of links in M , where M = P 2×[0, 1] is a cylinder over the real projective plane P 2, M = Σ× [0, 1] is a cylinder over a surface Σ with boundary, and M = S1 × S2. A finite covering p : N −→ M induces a map π1(p) ∗ betwe...
متن کاملHigher Degree Knot Adjacency as Obstruction to Fibering
It is know that the Alexander polynomial detects fibered knots and 3-manifolds that fiber over the circle. In this note, we show that when the Alexander polynomial becomes inconclusive, the notion of “knot adjacency”, studied in [KL], can be used to obtain obstructions to fibering of knots and of 3-manifolds. As an application, given a fibered knot K′, we construct infinitely many non-fibered k...
متن کاملFinite Type Invariants of Knots via Their Seifert Matrices∗
We define a filtration on the vector space spanned by Seifert matrices of knots related to Vassiliev’s filtration on the space of knots. Further we show that the invariants of knots derived from the filtration can be expressed by coefficients of the Alexander polynomial. The theory of finite type invariants (Vassiliev invariants) for knots was first introduced by V. Vassiliev [13] and reformula...
متن کاملGrope Cobordism of Classical Knots
Motivated by the lower central series of a group, we define the notion of a grope cobordism between two knots in a 3-manifold. Just like an iterated group commutator, each grope cobordism has a type that can be described by a rooted unitrivalent tree. By filtering these trees in different ways, we show how the Goussarov-Habiro approach to finite type invariants of knots is closely related to ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997